15 research outputs found

    Subgraph Induced Connectivity Augmentation

    Get PDF
    Given a planar graph G=(V,E) and a vertex set Wsubseteq V , the subgraph induced planar connectivity augmentation problem asks for a minimum cardinality set F of additional edges with end vertices in W such that G'=(V,Ecup F) is planar and the subgraph of G' induced by W is connected. The problem arises in automatic graph drawing in the context of c -planarity testing of clustered graphs. We describe a linear time algorithm based on SPQR-trees that tests if a subgraph induced planar connectivity augmentation exists and, if so, constructs an minimum cardinality augmenting edge set

    A branch-and-cut approach to the crossing number problem

    Get PDF
    The crossing number of a graph is the minimum number of edge crossings in any drawing of the graph in the plane. Extensive research has produced bounds on the crossing number and exact formulae for special graph classes, yet the crossing numbers of graphs such as K_{11} or K_{9,11} are still unknown. Finding the crossing number is NP-hard for general graphs and no practical algorithm for its computation has been published so far. We present an integer linear programming formulation that is based on a reduction of the general problem to a restricted version of the crossing number problem in which each edge may be crossed at most once. We also present cutting plane generation heuristics and a column generation scheme. As we demonstrate in a computational study, a branch-and-cut algorithm based on these techniques as well as recently published preprocessing algorithms can be used to successfully compute the crossing number for small to medium sized general graphs

    Two-Layer Planarization in Graph Drawing

    No full text
    We study the two-layer planarization problems that have applications in Automatic Graph Drawing. We are searching for a two-layer planar subgraph of maximum weight in a given two-layer graph. Depending on the number of layers in which the vertices can be permuted freely, that is, zero, one or two, different versions of the problems arise. The latter problem was already investigated in [11] using polyhedral combinatorics. Here, we stud

    The Fractional Prize-Collecting Steiner Tree Problem on Trees (Extended Abstract)

    No full text
    We consider the fractional prize-collecting Steiner tree problem on trees..
    corecore